WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation.
نویسندگان
چکیده
The TET2 DNA dioxygenase regulates cell identity and suppresses tumorigenesis by modulating DNA methylation and expression of a large number of genes. How TET2, like most other chromatin-modifying enzymes, is recruited to specific genomic sites is unknown. Here we report that WT1, a sequence-specific transcription factor, is mutated in a mutually exclusive manner with TET2, IDH1, and IDH2 in acute myeloid leukemia (AML). WT1 physically interacts with and recruits TET2 to its target genes to activate their expression. The interaction between WT1 and TET2 is disrupted by multiple AML-derived TET2 mutations. TET2 suppresses leukemia cell proliferation and colony formation in a manner dependent on WT1. These results provide a mechanism for targeting TET2 to a specific DNA sequence in the genome. Our results also provide an explanation for the mutual exclusivity of WT1 and TET2 mutations in AML, and suggest an IDH1/2-TET2-WT1 pathway in suppressing AML.
منابع مشابه
Over-expression of Wilm’s Tumor Gene 1 (WT1) in Iranian Patients with Acute Myeloblastic Leukemia
Background: The Wilm’s tumor gene 1 (WT1) encodes a zinc finger transcription factor that is inactivated in a subset of Wilm’s tumors. It plays a crucial role in growth, proliferation and development of some embryonic and adult organs. WT1 is expressed as a tumor associated antigen (TAA) in various types of solid and hematopoietic malignancies and can be employed as a useful marker for targeted...
متن کاملDNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia.
Somatic mutations in IDH1/IDH2 and TET2 result in impaired TET2-mediated conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). The observation that WT1 inactivating mutations anticorrelate with TET2/IDH1/IDH2 mutations in acute myeloid leukemia (AML) led us to hypothesize that WT1 mutations may impact TET2 function. WT1 mutant AML patients have reduced 5hmC levels similar to T...
متن کاملInvestigating the inhibitory effect of miR-34a, miR-449a, miR-1827, and miR-106b on target genes including NOTCH1, c-Myc, and CCND1 in human T cell acute lymphoblastic leukemia clinical samples and cell line
Objective(s): microRNAs are small non-coding molecules that regulate gene expression in various biological processes. T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy accompanied with genetic aberrations and accounts for 20% of children’s and adult’s ALL. Notch signaling pathway dysregulation occurs in 60% of T-ALL cases. In the present study, we aimed to de...
متن کاملHypoxia-Sensitive Epigenetic Regulation of an Antisense-Oriented lncRNA Controls WT1 Expression in Myeloid Leukemia Cells
WT1 is a transcription factor expressed in hematopoietic stem cells and in most cases of myeloid leukemia. We investigated the roles of hypoxia and epigenetics in the regulation of WT1 expression in myeloid leukemia cells. WT1 expression correlates with hypomethylation of the CpG island in Intron 1, and pharmacologic demethylation of this CpG island induces WT1 mRNA expression. Hypoxia causes d...
متن کاملRetinoic acid-stimulated sequential phosphorylation, PML recruitment, and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression.
We previously reported an intricate mechanism underlying the homeostasis of Oct4 expression in normally proliferating stem cell culture of P19, mediated by SUMOylation of orphan nuclear receptor TR2. In the present study, we identify a signaling pathway initiated from the nongenomic activity of all-trans retinoic acid (atRA) to stimulate complex formation of extracellular signal-regulated kinas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 57 4 شماره
صفحات -
تاریخ انتشار 2015